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Summary

High-resolution mapping is an important step in the
identification of complex disease genes. In outbred pop-
ulations, linkage disequilibrium is expected to operate
over short distances and could provide a powerful fine-
mapping tool. Here we build on recently developed
methods for linkage-disequilibrium mapping of quan-
titative traits to construct a general approach that can
accommodate nuclear families of any size, with or with-
out parental information. Variance components are used
to construct a test that utilizes information from all
available offspring but that is not biased in the presence
of linkage or familiality. A permutation test is described
for situations in which maximum-likelihood estimates
of the variance components are biased. Simulation stud-
ies are used to investigate power and error rates of this
approach and to highlight situations in which violations
of multivariate normality assumptions warrant the per-
mutation test. The relationship between power and the
level of linkage disequilibrium for this test suggests that
the method is well suited to the analysis of dense maps.
The relationship between power and family structure is
investigated, and these results are applicable to study
design in complex disease, especially for late-onset con-
ditions for which parents are usually not available.
When parental genotypes are available, power does not
depend greatly on the number of offspring in each family.
Power decreases when parental genotypes are not avail-
able, but the loss in power is negligible when four or
more offspring per family are genotyped. Finally, it is
shown that, when siblings are available, the total number
of genotypes required in order to achieve comparable
power is smaller if parents are not genotyped.
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Introduction

Increasingly large numbers of single-nucleotide poly-
morphisms are available in public and private databases
(Collins et al. 1997). The emergence of high-through-
put methods for their analysis holds promise for satu-
ration mapping of human complex-disease loci (Risch
and Merikangas 1996; Chakravarti 1998; Lander 1999).
Whereas allele-sharing methods of linkage analysis can
localize disease genes to broad chromosomal regions, in
complex diseases their resolution is often poor. Accord-
ingly, the effort spent in generating an increasingly fine
map provides rapidly diminishing returns when these
conventional methods of linkage analysis are used
(Kruglyak 1997).

In outbred samples, allelic association due to linkage
disequilibrium is expected to operate over very short
distances. Appropriately designed tests of association
that use family-based controls to account for population
substructure can provide direct tests of linkage disequi-
librium and efficient fine-mapping tools. These tests
should have much greater power when a fine map is
available, and their high resolution should be well suited
to identification of candidate genes.

The most popular of these family-based tests of as-
sociation is the transmission/disequilibrium test (TDT),
which was introduced by Spielman et al. (1993) as a test
of linkage in the presence of allelic association. When
either a single affected child is tested in each family or,
with appropriate adjustments (Martin et al. 1997), mul-
tiple children are tested, it is often used as a test of
linkage disequilibrium (i.e., a test of the joint hypothesis
of linkage and association). The TDT was designed for
the analysis of dichotomous traits, and a number of re-
finements have been proposed to allow, for example, the
use of siblings as controls (Curtis 1997) and increased
power in the presence of imprinting or dominance
(Weinberg et al. 1998).

It has been shown that tests of transmission disequi-
librium require a larger number of families in order to
achieve comparable power when siblings, rather than
parents, are used to construct controls (Curtis 1997).
However, it is not always practical to collect parents,
and attempting to deduce parental genotypes is fraught
with pitfalls (Curtis and Sham 1995). Ideally, TDT-like
tests should use parental genotypes when available and
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sibling genotypes otherwise, to consider all available in-
formation in the most efficient manner possible.

For many complex diseases, quantitative phenotype
scores contain more information than is provided by
dichotomous traits. Quantitative traits can provide ef-
fective descriptions of conditions as varied as asthma,
type II diabetes, learning difficulties, and osteoporosis.
The use of quantitative traits is well established in link-
age studies, and these traits should be equally effective
in family-based tests of association. Allison (1997) and
Rabinowitz (1997) introduced family-based linkage
tests, for quantitative traits; like the TDT, these tests use
parental genotypes to construct well-matched controls
and that are tests of linkage disequilibrium in simplex
families. Fulker et al. (1999) described an analogous test
for sib-pair data that does not use parental genotypes.

Here we present a general linkage-disequilibrium test
that is applicable to the analysis of quantitative traits in
nuclear families of any size and that optionally uses pa-
rental genotypes. The method builds on the recent ap-
proach of Fulker et al. (1999), in that association effects
are partitioned into between- and within-family com-
ponents. The model also makes use of the powerful and
flexible variance-components framework, to construct
tests of linkage, linkage disequilibrium, and population
admixture that use information from all available off-
spring. In addition to extending this model to accom-
modate nuclear families of any size, we derive the ex-
pectations of the model parameters and show that a test
of the within-family component is indeed free of con-
founding population-substructure effects, regardless of
the composition of nuclear families. We also show that
admixture impacts the between-family–component es-
timate when samples from a number of population strata
are combined. This general model encompasses the spe-
cific test and study design of Fulker et al. (1999), as well
as that of Rabinowitz (1997). The properties of the
model in terms of power and error rates are explored
in a number of situations, including moderate sample
sizes and violation of the multivariate normality as-
sumption underlying variance-components methods.
Power and optimal study designs in terms of parental
information and family size are also examined.

Maximum-Likelihood Tests of Association

Consider a candidate diallelic marker, M, with alleles
arbitrarily designated as “1” (with frequency p) and “2”
(with frequency ) and an additive genetic valueq = 1 � p
a. Note that our usage of the additive genetic value refers
to the observed marker, not the trait locus, and that

only when the marker locus is either the trait locusa ( 0
or in disequilibrium with it. Also, as long as the phase
of the association is the same in all subpopulations,

only when there is no linkage disequilibrium.a = 0
Given a set of nuclear families, each with nii = 1 ) K
children so that the total number of offspring is N =

, define the marker phenotype mij and the genotypeS ni i

score gij for the jth offspring ( ) in the ith familyj = 1 ) ni

as of “1” alleles at locus M, andm = number g =ij ij

. If both parental genotypes are known, label theirm � 1ij

analogous genotype scores giM and giF for the male and
female parent, respectively.

Following the usual biometric model (Falconer 1989),
we assume that the phenotype scores for the trait of
interest are defined by a major-gene effect, familial ef-
fects (which include the effects of shared environment
and half the additive polygenic variance), and a residual
environmental component. The expected mean of the
residual resemblance and unique environmental effects
are assumed to be 0, so that

E(y ) = E(m � g a) = m � (p � q)a , (1)ij ij

and, for the offspring in each family, the variance-n # ni i

covariance matrix, Qi, has elements

2 2 2j � j � j if j = ka s eQ = , (2)ijk 2 2{p j � j if j ( kijk a s

where pijk denotes the proportion of alleles shared iden-
tical by descent (IBD) between siblings j and k in family
i, is the additive genetic variance of the major gene,2ja

is the residual sibling resemblance, and is the re-2 2j js e

sidual environmental variance component. Note that
these expectations do not include any dominance vari-
ance, although the general method can easily accom-
modate such effects (Fulker et al. 1999; also discussed
below).

Variance-components approaches allow simultaneous
modeling of the means and variances, so that all the
information in a set of related individuals can be used
to construct a test of association. For a particular means
model, such as

ŷ = m � b g , (3)ij a ij

and for estimates of all of the variances in Qi, the like-
lihood of the data for the complete set of parameters,

, is2 2 2v = [m,b ,j ,j ,j ]a a s e

ˆ′ �1ˆ ˆ�n /2 �1/2 �1/2[(y �y ) Q (y �y )]ˆj i i i i iL = P (2p) FQF e . (4)i i

Evidence for association can be evaluated by maximi-
zation of L with the constraint (null-hypothesisb = 0a

likelihood, L0) and without constraints on the param-
eters (alternative-hypothesis likelihood, L1). Asymptot-
ically, the quantity is distributed as x2,2[ln (L ) � ln (L )]1 0
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Table 1

Example Scoring of bi and wij in a Sib Pair

OFFSPRING

PARENTAL

INFORMATION SIBS ONLY

gi1 gi2 P(g) bi wi1 wi2 bi wi1 wi2

One Heterozygous Parent (giF, giM) = (1, 0)

0 0 p3q 1
2 �1

2 �1
2 0 0 0

0 1 2p3q 1
2 �1

2
1
2

1
2 �1

2
1
2

1 1 p3q 1
2

1
2

1
2 1 0 0

Two Parents Heterozygous (giF, giM) = (0, 0)

�1 �1 p2q21
4 0 �1 �1 �1 0 0

1 1 p2q21
4 0 1 1 1 0 0

0 0 p2q2 0 0 0 0 0 0
�1 0 p2q2 0 �1 0 �1

2 �1
2

1
2

0 1 p2q2 0 0 1 1
2 �1

2
1
2

�1 1 p2q21
2 0 �1 1 0 �1 1

NOTE.—For the unordered pairs of parental genotype scores
and , the table lists possible(g , g ) = (1, 0) (g , g ) = (0, 0)iF iM iF iM

offspring genotype scores, and their frequency at the popu-
lation level. The scoring of bi and wij is illustrated for these
cases by use of either parental genotypes or sibling genotypes
only. Note that the frequency of these mating types is 4 3p q
and 4 , respectively.2 2p q

with df equal to the difference in number of parameters
estimated. Similar likelihood-ratio tests have been pro-
posed as tests of association between marker and phe-
notype (e.g., see George and Elston 1987), and, in the
absence of population admixture, they are valid tests of
linkage disequilibrium, because . For familiesE(b ) = aa

with exactly two siblings, this model is the same as the
general model of Fulker et al. (1999).

Population Admixture

We allow for the most extreme form of population
admixture, in which each family is drawn from a dif-
ferent stratum. Define mi, pi, and qi, the phenotypic mean
and allele frequencies for the stratum from which family
i was drawn. Assume that within each subpopulation
there is random mating and random transmission of
parental alleles to offspring and that the total sample of
N individuals is centered on mean 0; that is, m =

.S n m = 0i i i

In this situation, the expectation given in equation (1)
can be expressed as ,E(y ) = E(m � g a) = m � (p � q )aij i ij i i i

and the alternative hypothesis of no linkage disequilib-
rium is no longer encompassed in a test of . Asb ( 0a

shown in Appendix A, in this case, E(b ) = S n (p �a i i i

, where Vg is the variance of the genotypicq )m /(NV) � ai i g

scores. The numerator of the first term in this expression
represents “spurious” association, at the population
level, that is independent of linkage.

Orthogonal Decomposition of the Genotype Scores

Fulker et al. (1999) proposed that, for sib-pair data,
the genotype score could be decomposed into orthogonal
between-family (b) and within-family (w) components,
in which only the former is sensitive to population struc-
ture and in which the latter is significant only in the
presence of linkage disequilibrium. The means model
under this specification is

ŷ = m � b b � b w , (5)ij b i w ij

where bi and wij are orthogonal between- and within-
family components of gij. We extend this model to ac-
commodate any number of offspring, with or without
parental genotypes, as

� gij
j if parental genotypes are unknown
ni

b = ,i {g � giF iM if parental genotypes are available
2

w = g � b , (6)ij ij i

so that bi is the expectation of each gij conditional on
family data and wij is the deviation from this expectation
for offspring j. Note that, when , all possibleb = (S g )/ni j ij i

siblings are considered and parental data are ignored,
whereas, when , only parental data areb = (g � g ) /2i iF iM

used (for an example of how bi and wij are scored, with
and without parental data, see table 1). Positive values
of wij indicate that a child inherits more copies of allele
“1” than would be expected, whereas negative values
refer to inheritance of an excess of allele “2.” For sib-
pair data for which parental genotypes are not available,
which is the situation described by Fulker et al. (1999),

for any i, so that different alleles are testedw = �wi1 i2

in each member of a sib pair and the distribution of bw

is unaffected by linkage in the absence of association.
Fulker et al. (1999) suggested that the bw regression

coefficient, when estimated in the context of a variance-
components model and in the absence of population
admixture, provides a direct estimate of the additive ge-
netic value a. Allowing for population admixture and
extending the model to allow both for sibships of any
size and for the inclusion of parental genotype data, we
derive the expectation of bb and bw for each of these two
alternative definitions and show that all the “spurious”
association between genotype score and phenotype is
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accounted for by bb and that the bw regression coefficient
remains a direct estimate of the additive genetic value a
(at the marker).

By use of the normal equations, equation (5) can be
expressed as , so that Xy, whereˆ ′ �1y = Xb � e b = (X X)
X is the design matrix and . X′X and Xy areb̂ = (b ,b )b w

asymptotically the covariance matrices between the in-
dependent and dependent variables, respectively. To
solve these equations, only the expectations for the var-
iances, Vb and Vw, and covariances, Cb,y and Cw,y, are
required, since bi and wij are orthogonal by design. These
quantities are derived in Appendices B and C.

Parental Genotypes Available

As shown in Appendix B,

V Cb b,w

=[ ]
C Vb,w w

22 2 �n (p � q )i i i�n (p � q � p q ) [ ]i i i i i ii � 02N N
,�n p qi i i[ ]i0

N

and

� n (p � q )mi i i i
iC � V ab,y bN

= ,�n p qi i i[ ] [ ]iC aw,y N

so that

�n (p � q )mi i i i
i

b � ab NVb
= .[ ][ ]

b aw

Note that all the population-substructure effects in the
means, mi, that are apparent in the general specification
of E(ba) are included in the expectation of bb exclusively.
Whereas bb provides a direct estimate of a only if there
is no “spurious” association between g and y (e.g., when
all mi are 0 or, since , when p and q are con-S n m = 0i i i

stant), bw is independent of any “spurious” effects and
remains a valid estimate of a even when there is
admixture.

Parental Genotypes Unobserved or Unused

As shown in Appendix C,

V Cb b,w

=[ ]
C Vb,w w

2n �12 2 i �n (p � q )i i i�n [p � q � p q ( )] [ ]i i i i i n iii
� 02N N

,�p q (n � 1)[ ]i i i
i0

N

and

�n (p � q )mi i i i
iC � V ab,y bN

= ,�p q (n � 1)i i i[ ] [ ]iC aw,y N

so that, as , the contribution of each fam-[(n � 1)/n ] r 1i i

ily to Vb, Vw, Cb,y, and Cw,y approximates that of the
case in which parents are available (given in the previous
section). On solution of the normal equations,

�n (p � q )mi i i i
i

b � ab NVb
= ,[ ][ ]

b aw

so that bw remains a direct estimate of a, independent
of population admixture and the number of offspring
observed in each family. In contrast, bb is again a direct
estimate of a only when there is no “spurious” associ-
ation between genotype scores, g, and phenotype, y.
These expectations show that the admixture test of

proposed by Fulker et al. (1999) is valid evenb = bb w

when parental genotypes are included in analysis and
when sibships of size 12 are evaluated.

Simulations

A number of simulation studies were conducted to
explore the properties of this orthogonal decomposition
of genotype scores as a test of linkage disequilibrium.
Data were simulated in nuclear families each having one
to eight offspring. Trait values were constructed as the
sum of a major-gene effect (with variance ) generated2ja

by an additive quantitative-trait locus (QTL), Q, having
two equifrequent alleles, a residual sibling correlation
( ), and an environmental effect ( ), each assigned in-2 2j js e

dependently from a normal distribution with mean 0.
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Except where noted, a diallelic marker locus M, with
allele frequencies , was simulated with a re-1p = q = 2

combination fraction (v) of 0. For convenience, the total
trait variance was fixed at 100 in all2 2 2 2j = j � j � ja s e

simulations.
Linkage disequilibrium between the trait and marker

locus was introduced in the parental chromosomes.
When appropriate, disequilibrium was modeled in
the usual fashion as is theD = p � p p (pM Q M Q M Q1 1 1 1 1 1

frequency of the haplotype with alleles M1 and Q1, and
and are the frequencies of alleles M1 and Q1;p pM Q1 1

Lewontin and Kojima 1960), so that D =max

, and the standardized disequilib-min (p ,p ) � p pM Q M Q1 1 1 1

rium coefficient is .D/Dmax

Where noted, population admixture was generated by
the mixing of families drawn from one of two popula-
tions (A and B) with different phenotypic means (mA and
mB) and marker allele frequencies ( and ) inp = .7 p = .3A B

equal sampling proportions. mA and mB were selected such
that admixture accounted for 20% of the total pheno-
typic variance in the combined population; that is,

2 2[(m � m ) /4j ] = .20A B

Except where noted, parental genotypes were used to
estimate p by use of information available from the sin-
gle-marker locus (Haseman and Elston 1972). By use of
the variance-components model (eq. [2]) and the or-
thogonal model for the means (eq. [5]), the likelihood
was maximized under the null ( ) and alternativeb = 0w

hypotheses, to calculate L0 and L1, respectively (eq. [4]).
As suggested by Searle et al. (1992), the variance-com-
ponent estimates were constrained to be positive. To
examine the benefits of parental information, each sim-
ulated data set was examined under the two alternative
definitions of bi and wij (see eq. [6]). Only families having
at least one heterozygous parent (when parental geno-
types were used) or at least two different types of off-
spring (when parental genotypes were ignored) were in-
cluded in the likelihood calculations, since other families
do not contribute to estimates of bw. For the purpose of
our simulations, power and error rates were defined as
the proportion of simulations exceeding nominal sig-
nificance levels for the x2 distribution under the likeli-
hood-ratio criteria.

It is well known that segregation of a major locus
violates the multivariate normality assumption and that
maximum-likelihood estimates of the variance compo-
nents can be biased in small samples (Amos et al. 1996).
To characterize the effect that that bias has on the present
test, error rates of bw were examined for a range of
sample sizes (i.e., 120–1,920 offspring) and family struc-
tures (1–8 children), in the following situations: (1) no
sibling correlation or major-gene effect ( ) in2 2j = j = 0s a

homogeneous and admixed populations, (2) a large ma-
jor-gene effect ( ) or a large residual sibling cor-2j = 30a

relation ( ), and (3) both residual sibling corre-2j = 50s

lation and major-gene effect ( , ). Five2 2j = 20 j = 30a s

thousand simulated data sets were examined in each test
case. No disequilibrium was modeled in any of these
simulations.

The effects that family structure and linkage disequi-
librium have on power were examined in a sample of
480 total offspring when and , by varying2 2j = 10 j = 30a s

D between 0 and Dmax and varying, from one to eight,
the number of offspring in each family. In these assess-
ments, the total number of offspring sampled was fixed,
so that the number of families varied according to sib-
ship size. Finally, the sensitivity of the test to linkage
disequilibrium was estimated for a variety of sample
sizes and family structures. Sensitivity was defined as the
most stringent significance level that could be obtained
with 80% power in simulated data sets in which the
trait and marker loci were identical. When power and
test sensitivity were examined, 1,000 simulated data sets
were analyzed in each case.

Permutation Test

For each family, the vector wi denotes the observed
pattern of allelic transmission. In the absence of linkage
disequilibrium, the vectors wi and �wi are equally likely,
as long as there is no segregation distortion. Construct
a random permutation of any set of K families by re-
placing each wi with either itself or �wi, with equal
probability, so that, for any given data set, there are 2K

different permutations of the data. The distribution of
the maximum likelihood of the data, L1, under the hy-
pothesis of no linkage disequilibrium is the distribution
of the maximum likelihoods of these 2K permuted data
sets. When the distribution of is not2[ln (L ) � ln (L )]1 0

well approximated by the x2 distribution, the distribu-
tion of L1 can be estimated by a sampling of a large
number of permutations and their respective likelihoods.
These empirical P values and the likelihood-ratio cri-
terion were compared in a small sample (120 total off-
spring) in which the major-gene effect was introduced
by simulation of a dominant QTL with equally frequent
alleles. In this situation, empirical significance levels
should be desirable because both dominance (which
both induces nonnormality into the trait distribution and
makes the variances model [eq. {2}] incomplete) and the
small sample size are expected to reduce the accuracy
of asymptotic significance levels. For dichotomous traits,
the increased error rates of likelihood-ratio tests in small
samples, as well as their spurious effect on power, have
been described by Whittaker and Thompson (1999). The
rationale for permutation tests in linkage studies has
been discussed by Wan et al. (1997).
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Table 2

Error Rates When Parents Are Available

ERROR RATEb WHEN TOTAL

NO. OF OFFSPRING IS

OFFSPRING PER FAMILY

AND TEST CASEa 120 240 480 960 1,920

1:
Overall 5.5 5.3 5.4 5.1 5.1

2:
Null 5.4 5.0 5.3 4.8 5.0
Admixture 5.6 5.4 5.4 4.6 5.7
Sibling resemblance 4.8 5.0 4.7 4.4 5.2
Linkage 7.0 5.4 5.7 5.0 5.3
Composite 5.6 4.8 4.9 5.4 5.1

4:
Null 5.1 5.1 4.9 4.5 4.2
Admixture 5.0 4.9 4.5 5.2 4.7
Sibling resemblance 4.8 5.0 4.7 4.4 4.8
Linkage 7.0 5.4 5.7 5.0 5.2
Composite 5.6 4.8 4.9 5.4 5.3

8:
Null 4.9 5.3 5.7 4.8 5.5
Admixture 4.5 4.4 4.9 4.2 5.2
Sibling resemblance 4.4 4.0 4.5 4.7 4.8
Linkage 6.5 6.2 5.9 5.8 6.1
Composite 5.2 5.3 5.0 5.2 4.7

a Null = no sibling resemblance, or major-gene effect ( );2 2s = h = 0
Admixture = no sibling resemblance, or major-gene effect ( 2 2s = h =
, with population admixture); Sibling resemblance = large sibling0

resemblance ( ); Linkage = linked major gene of large effect2s = .5
( , ); Composite = composite test case ( and ,2 2 2h = .3 v = 0 s = .3 h = .2

). There was no linkage disequilibrium between QTL and markerv = 0
locus ( ). For single-child families, only the overall error rate isD = 0
reported. Each estimate is based on 5,000 replicates.

b Shown as the proportion of simulations exceeding the nominal
significance level, .05.

Table 3

Error Rates When Parents Are Unavailable or Unused

OFFSPRING PER FAMILY

AND TEST CASEa

ERROR RATEb WHEN TOTAL

NO. OF OFFSPRING IS

120 240 480 960 1,920

2:
Null 6.5 6.1 5.7 5.3 5.1
Admixture 6.6 6.0 4.6 4.2 4.8
Sibling resemblance 5.4 5.5 5.5 4.7 5.1
Linkage 7.1 5.7 6.0 5.7 5.3
Composite 5.7 5.2 5.2 5.2 4.9

4:
Null 5.3 5.4 4.5 4.6 4.8
Admixture 5.1 4.1 4.4 4.7 4.6
Sibling resemblance 4.3 4.4 4.6 4.6 4.7
Linkage 6.2 6.1 5.7 5.7 5.3
Composite 5.5 6.1 5.5 5.2 4.8

8:
Null 5.2 4.9 5.4 4.8 5.2
Admixture 4.2 4.2 4.6 4.2 5.0
Sibling resemblance 3.5 4.3 4.8 3.9 4.8
Linkage 7.7 6.9 5.9 5.6 5.5
Composite 6.1 5.7 5.2 5.2 5.4

NOTE.— The simulated data sets are the same as those used in table
1, but parental genotypes were not considered during the analysis.

a Test cases are as defined in table 2.
b Shown as the proportion of simulations exceeding the nominal

significance level, .05.

Type 1–Error Rates

Error rates in estimates of the bw parameter in vari-
ous test cases are presented in tables 2 and 3. Additional
family structures were examined, but the results were
intermediate between those tabulated and are not
shown. A large major gene and sibling resemblance were
selected for description of error rates, to make any pos-
sible biases obvious. When one child from each family
was considered, error rates were not influenced by pop-
ulation admixture or by the effects of the linked major
locus or additional sibling resemblance, so that only a
summary error rate over all test cases is reported.

The error rates for the rows labeled “Null” in tables
2 and 3 should be considered as baseline error rates for
the other test cases. Not surprisingly, error rates were
closer to nominal significance levels in larger samples,
where the likelihood-ratio criterion is more accurate. For
very large samples, the asymptotic criteria seem to be
appropriate regardless of model or sibship size (tables 2

and 3). In smaller samples, error rates are slightly high
for the linkage test case and are slightly low for the
admixture and sibling-resemblance test cases, an effect
that is more pronounced for larger sibships. When only
a small number of observations are considered, estimates
of the variance components may be biased (see Hopper
and Mathews 1982; Amos et al. 1996), so that these
error rates are not a specific feature of the present model
but may reflect violations of multivariate normality.

As the sample size increases, bias in the maximum-
likelihood estimates of variance components should be
reduced, and the error rate of asymptotic significance
tests should approach its nominal level (Amos et al.
1996). These small-sample biases decrease for more-re-
alistic values of and . It is interesting to note that,2 2j ja s

although some bias remains when the variance com-
ponents are estimated by maximum likelihood, these bi-
ases are much larger if only is considered: for example,2je

if the linkage information is ignored and a traditional
least-squares regression framework is adopted, modeling
only and the association parameters, the error rates2je

exceed 11% at the nominal .05 significance level, for all
sample sizes examined in the eight-sib linkage-test case
in tables 2 and 3.

When parental genotypes are not available for analysis
(table 3), it may appear counterintuitive that, although
the biases follow the general trends described above, they
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Table 4

Effects of Family Structure and Linkage Disequilibrium on Power

D/Dmax
a

(%)
ONE SIB

PER FAMILY

TWO SIBS

PER FAMILY

THREE SIBS

PER FAMILY

FOUR SIBS

PER FAMILY

FIVE SIBS

PER FAMILY

SIX SIBS

PER FAMILY

EIGHT SIBS

PER FAMILY b̂w

No. of Families When Total No. of Sibs Is 480

480 240 160 120 96 80 60

Power When Parental Genotypes Are Included in Analysis, for E(Nw) = 360b

0 .2 .0 .1 .1 .2 .1 .0 .01
25 2.1 1.8 2.0 2.6 3.0 2.1 2.1 1.11
50 19.5 22.9 24.8 26.7 26.7 27.2 23.9 2.24
75 69.3 72.6 74.2 76.9 76.0 76.5 75.4 3.35
100 97.4 97.7 98.3 98.4 98.2 98.4 98.5 4.46

Power When Parental Genotypes Are Not Included in Analysis, for E(Nw) =b

) 195 281 322 341 350 358

0 ) .1 .1 .2 .2 .0 .0 .02
25 ) 1.2 2.3 2.7 2.3 1.6 1.8 1.11
50 ) 12.8 18.7 22.6 23.5 25.2 23.1 2.25
75 ) 44.3 64.1 69.5 71.5 73.5 73.9 3.34
100 ) 83.3 94.6 97.3 97.7 98.0 98.3 4.45

NOTE.— Each simulated data set consisted of 480 total offspring, so that the total number of families decreased with
increasing sibship size.

a Between QTL and marker locus ( ). The total trait variance was set at 100, so that the true additive genetic valuev = 0
at the QTL was 4.47.

b Power is shown as the proportion of simulations exceeding the nominal significance level, .001. The simulation pa-
rameters specified a QTL locus with and a residual sibling correlation . Nw = effective sample size, which2 2h = .1 s = .3
corresponds to offspring in families in which allelic transmission could be scored.

appear to be greater in the two-sib case. The reason for
this increased bias is that wi is not 0 (and therefore
informative) in only a small proportion of sib pairs when
parental genotypes are not available for analysis, so that
the effective sample size is much less than that actually
genotyped.

Power Estimates

Results of the power calculations are presented in ta-
ble 4 and figure 1. When parental genotypes are avail-
able, power depends mostly on the amount of disequi-
librium between the trait and marker loci and is largely
independent of the number of offspring in each family
(table 4). In contrast, when parental genotypes are not
available, power depends both on family size and on the
level of disequilibrium: larger sibships allow a greater
proportion of segregating alleles to be identified (and
scored to be not 0 in the respective wij), and, thus, power
increases with the number of siblings in each family. As
might be expected, for any family size, power is always
greater when parental genotypes are available for anal-
ysis, since all pairs of segregating alleles are evident in
this situation. However, for larger sibships (four or more
offspring), it appears that �5% power is lost when pa-
rental genotypes are unavailable.

When , it is possible to achieve consid-D/D 1 50%max

erable power for loci accounting for 10% of the phe-
notypic variance, and estimates of bw are unbiased and
essentially exact when there is complete disequilibrium
(table 4). The relationship between the apparent additive
genetic value of the marker locus, bw, the disequilibrium
coefficient, D, and additive genetic effect at the QTL is
very close to (Falconer 1989;a = a D/p qmarker QTL QTL QTL

Fulker et al. 1999). This implies that the proportion of
variance explained by the association parameter is a
function of the squared disequilibrium coefficient and2D
the additive genetic variance of the trait locus, so that
it is not surprising that power is very sensitive to D.
When and the QTL and marker-allele fre-D = Dmax

quencies are the same, all of the genetic variance attrib-
utable to the QTL will be encompassed in the allelic-
association parameter, and estimates of the residual ad-
ditive genetic variance ( ) will equal 0.2ja

Figure 1 shows the most stringent significance level,
a, that can be applied when 80% power is achieved, as
a function of both the total number of offspring sampled
and the additive genetic variance of the QTL, when the
trait locus is observed. As noted previously, when pa-
rental genotypes are available, power does not depend
greatly on the number of offspring in each family, so
that only the sib-pair case has been plotted. When par-
ents are unavailable, it is clear that achievable signifi-
cance levels rapidly approach that of the case in which



286 Am. J. Hum. Genet. 66:279–292, 2000

Figure 1 Sensitivity of the orthogonal test to association. Sen-
sitivity is defined as , where a is the significance level exceededlog a10

by 80% of simulated data sets. The total number of offspring varied
between 240 and 1,920 (in increments of 240 children). Results were
plotted for sib-pair families in which parental genotypes were available
for analysis (squares) and for sib-pair (diamonds), sib-triad (triangles),
and sib-quad (circles) families in which parental genotypes were not
available for analysis. The proportion of phenotypic variance attrib-
utable to residual sibling resemblance (s2) was .30. The major-gene
effect (h2) was .10 in panel A, .05 in panel B, and .025 in panel C,
Each plotted data point corresponds to 1,000 simulated data sets. For
convenience, a least-squares straight line has been plotted through each
set of data points.

parents are available, as the number of children in each
family increases. When these plots are used, an arbitrary
significance level may be selected for a given sample size
and study design. Alternatively, for a desired number of
independent tests and correspondingly adjusted signifi-
cance level, an appropriate sample size and study design
may be selected. For example, for the hypothetical ge-
nome screens proposed by Risch and Merikangas
(1996), and , so that, as can�8a = 5 # 10 log (a) = 7.310

be seen in figure 1A, either ∼350 sib pairs with parents
(700 total offspring but 1,400 genotypes) or ∼500 sib
pairs without parental information (1,000 total off-
spring/genotypes) or ∼260 sib trios without parents (800
total offspring/genotypes) are needed for 80% power
and a locus that accounts for 10% of phenotypic vari-
ance. It is noteworthy that the total number of genotypes
required is smaller when parental information is not
used. In practice, the marker locus and trait locus will
often not be identical, so these represent best-case esti-
mates of power.

Evaluation of the Permutation Test

To assess the performance of the permutation test, a
series of simulations was undertaken in which domi-
nance variance was introduced to skew the phenotypic
distribution and to violate multivariate normality. In an
attempt to introduce further departures from asymptotic
expectations, we omitted the appropriate dominance-
variance parameter from the variance-components por-
tion of the model. The results of these simulations are
presented in table 5. The performance of the empirical
permutation test was examined in 5,000 samples of 120
offspring (in families with 1 to 8 children) when a dom-
inant major gene ( ) was segregating (v =2 2H = .3, s = .3
0). When , the overall error rate at the .05 signif-D = 0
icance level was .06 when asymptotic expectations were
used but was .05 when empirical significance levels were
calculated from 1,000 permutations of each data set.
When , power at the .05 significance level wasD = Dmax

56% for asymptotic significance levels but was 52%
when empirical significance levels were calculated from
1,000 permutations of each data set. For larger samples
in which the model is well specified, such as those in
table 4, we find no significant advantages in this per-
mutation test.

Discussion

The orthogonal model that we propose is a general-
ization of the one described by Fulker et al. (1999) for
sib-pair data. It allows for the optional inclusion of pa-
rental data, which greatly increases power, and for the
analysis of larger sibships, in which identification of
segregating alleles is more efficient. For large sample



Abecasis et al.: General Association Test for Quantitative Traits 287

Table 5

Error Rates When the Variances Model for Qijk Is
Inappropriate

OFFSPRING

PER FAMILY

ERROR RATE WHEN TOTAL NO.
OF OFFSPRING ISa

120 240 480 960 1,920

When Parental Genotypes Are Available

1 5.9 5.6 5.2 5.1 5.2
2 6.3 5.2 5.5 5.3 5.8
4 6.3 5.2 5.5 5.3 5.6
8 6.9 6.6 6.2 5.9 5.5

When Parental Genotypes Are Not Available

2 7.0 5.7 5.8 5.2 5.7
4 6.5 6.6 6.1 6.3 6.2
8 8.6 7.0 6.2 6.1 5.5

a Proportion of simulations exceeding the nominal
.05 significance level when there is a linked dominant
major gene ( , ) with equally frequent alleles.2v = 0 h = .3
The model for variances in Qj did not include a dom-
inance variance component, so that in larger families
the error rate is high. This major gene also introduced
skewness in the phenotype distribution, violating mul-
tivariate normality.

sizes or when empirical significance levels are calculated
by the permutation method described, the test is robust
to a variety of biases, including linkage, background
familiality, and population stratification. Also, when
parental data are used, the test of the within-fam-
ily–association parameter bw is asymptotically a test of

and is equivalent to that described by Rabi-E(wy) = 0
nowitz (1997) without the benefit of the variance-com-
ponents framework. Other linear models, such as that
proposed by Allison (1997), could be used with the var-
iance-components approach, but the orthogonal model
is attractive because it both provides direct estimates of
the additive genetic value of the marker alleles and can
be used when parental genotypes are unavailable. It is
important to emphasize that the present approach treats
linkage and association separately. Consequently, in con-
trast to other methods, which provide tests of disequi-
librium only in minimal family configurations (Spielman
et al. 1993; Allison 1997; Rabinowitz 1997; Allison et
al. 1999), the orthogonal method does not detect linkage
in the absence of disequilibrium in nuclear families of
any configuration.

Although, in our simulations, power depended mostly
on the major-gene–effect size and on the total number
of offspring available for analysis, in practice it is un-
desirable to rely on a small number of large families,
because they might represent very few alleles. However,
moderate-size families (i.e., three to four sibs) might be
more attractive than sib pairs, because they provide
much greater power when parents are not available and
require less genotyping effort when parents are available.

The observation that, for multiplex families, the number
of individuals that need to be genotyped in order to
achieve comparable power is smaller when parental ge-
notypes are not used is important in situations in which
genotyping capacity is limited.

Obviously, power is very sensitive to disequilibrium,
so that this test and other, related approaches are well
suited for the analysis of dense maps. In practice, it may
not be practical to use these dense maps for genome
screens, but they can be used to follow up suggestive
linkages that have been identified by allele-sharing meth-
ods on a more sparse map. When a dense marker map
becomes available, it can be used to produce multipoint
estimates of IBD. In the variance-components side of the
model, better IBD estimates allow the fitted variance-
covariance matrix to better approximate the true vari-
ances and covariances, improving the performance of
the model, in terms of both power and error rates.

The model can be easily extended to allow for mul-
tiallelic markers with up to X alleles, by inclusion of a
separate between- and within-family component for al-
leles 1 through , and, in this situation, no changesX � 1
to the variance model should be required. In other sit-
uations, it might be appropriate to define either domi-
nance genotype scores or, when imprinting is suspected,
separate paternal and maternal genotype scores. These
alternative genotype scores can be decomposed into or-
thogonal components by taking either the sibling aver-
age or its asymptotic expectation derived from the pa-
rental genotypes. However, these modifications require
either changes to the variance model or calculation of
empirical P values, by analogous permutation tests.

Hopper and Mathews (1982) have described a num-
ber of methods for verifying that multivariate normality
assumptions are not grossly violated. The permutation
test that we describe should allow this orthogonal model
to be applied in situations in which multivariate nor-
mality is violated—for example, when the sample size
is small or the trait distribution has been skewed by
selection (e.g., see Allison 1997) or when the model for
variances may be inappropriate. However, asymptotic
significance levels are still appropriate in most situations
examined here and can be a useful tool in prescreening,
to conserve computing resources.
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Appendix A

E(ba) with Allowance for Population Admixture

Consider population admixture by defining mi and pi and qi as the phenotypic mean and the marker-allele
frequencies for the population from which family i was drawn (allowing for up to K different subpopulations).
Assume that within each subpopulation there is random mating and random transmission of parental alleles to
offspring and that the total sample of N individuals is centered on mean 0, so that . In this situation,m = Sn m = 0i i

�n u �n (p � q )a �n (p � q )ai i i i i i i i
i i iE(y) = � = ,
N N N

1�n � P(g = lFi)l �n (p � q )i i i i
i l=�1 iE(g) = = ,

N N
1

2 2 2�n � P(g = lFi)l �n (p � q )i i i i
i l=�1 i2E(g ) = = ,

N N

and

1
2 2�n � [P(g = lFi)l(m � la)] �n (p � q )m �n (p � q )ai i i i i i i i i

i l=�1 i iE(gy) = = � ,
N N N

so that, for model (3), when the standard expectations and are used, for2 2V = E(x ) � E(x) C = E(xy) � E(x)E(y)x x,y

any x and y,

�n (p � q )mi i i iC ig,yE(b ) = = � a ,a V NVg g

where

2 2 2�n (p � q ) �n (p � q )i i i i i i
i iV = � .[ ]g N N

These expectations extend those of Cardon (in press).

Appendix B

E(bb) and E(bw) with Use of Parental Genotypes

For the orthogonal model in equation (5), the expectations for Vb, Vw, Cb,y, and Cw,y are required for solution
of the normal equations and to obtain expectations for the regression parameters bw and bb.

Let denote the sum over all possible mating types z and note that E(y), E(g), E(g2), and E(gy) are as given inSz

Appendix A. Then, when the mating type frequencies given by Haseman and Elston (1972) are used,
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4 4 3 3�n �P(zFi)E(bFz) �n (p � q � 2p q � 2p q ) �n (p � q )i i i i i i i i i i i
i z i iE(b) = = = ,

N N N

E(w) = E(g � b) = 0,
2 4 4 3 3 2 2�n �P(zFi)E(b Fz) �n (p � q � p q � p q ) �n (p � q � p q )i i i i i i i i i i i i i

i z i i2E(b ) = = = ,
N N N

�n p qi i i
i2 2E(w ) = E[(g � b) ] = ,

N

�n �P(zFi)E(byFz) �n �P(zFi)E(bm Fz) �n �P(zFi)E(bgaFz)i i i i
i z i z i zE(by) = = �

N N N
4 4 3 3 2 2�n (p � q )m �n (p � q � p q � p q )a �n (p � q )m �n (p � q � p q )ai i i i i i i i i i i i i i i i i i i i

i i i i= � = � ,
N N N N

and

�n p qi i i
iE(wy) = E[(g � b)y] = E(gy � by) = a .

N

These are all the quantities required in order to determine

2

2 2 �n (p � q )i i i�n (p � q � p q ) [ ]i i i i i i
iV C � 0b b,w 2N N′XX = = [ ]�n p qi i i[ ]

iC V 0b,w w N

and

�n (p � q )mi i i i
iC � V ab,y bN

Xy = = .�n p qi i i[ ] [ ]iC aw,y N

So, on inversion and multiplication,

� n (p � q )mi i i i
i

b � ab NVb
b̂ = = .[ ][ ]

b aw
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Appendix C

E(bb) and E(bw) with Use of Sibling Genotypes Only

When one parent is heterozygous, consider allelic transmission binomial ( ), so that .1 12 2t ∼ n , E(t ) = ( )(n � n )i i i2 4

When the heterozygous and homozygous parents transmit the same allele t times, . Thus, for any fam-FbF = t/ni

ily i,

2E(t ) n � 1i2 2E(b FC ) = E(FbF FC ) = = ,i 1 i 1 2n 4ni i

where C1 denotes the condition that exactly one parent is heterozygous.
To calculate E(by), it is convenient to separate y into its orthogonal-mean, m, and major-gene, ga, components.

Recall that , so that, when one parent is heterozygous, the major-gene component isb = (1/n )S gi i j ij

� g 2) ijb g a � � b g a E(t )a n � 1ji i1 i in i2iE(b g aFC ) = E C = E b C a = E(b FC )a = = a .i i 1 1 i 1 i 1F F 2( ) ( )n n n 4ni i i i

When two parents are heterozygous, consider allelic transmission binomial , so that and1′ ′t ∼ (2n , ) E(t ) = ni i2

. When allele 1 (or 2) is transmitted times, . So, for any family i,1′2 2 ′ ′E(t ) = ( )(4n � 2n ) t FbF = Ft /n � 1Fi i i4

2
′t 4n � 2 1i2 2E(b FC ) = E(FbF FC ) = E � 1 = � 1 = ,1 2 i 2 [( )]n 4n 2ni i i

and the major-gene component of E(by) is

2
′)b g a � � b g a t 1i i1 i in 2iE(b g aFC ) = E C = E(b FC )a = E a = a ,i i 2 2 i 2F( ) [( ) ]n n � 1 2ni i i

where C2 denotes the condition that both parents are heterozygous.
When C1 and C2 are considered, together with E(y), E(g), E(g2), and E(gy) given in Appendix A, and the mating-

type frequencies

n �1 n �1 1 n �12 4 4 3 3 2 2 2 2i i i�n �P(zFi)E(b Fz) �n [p � q � 4p q ( ) � 4p q ( ) � 4p q ( )] �n [p � q � p q ( )]i i i i i i i i i i i i i i i4n 4n 2n ni i i i
i z i i2E(b ) = = = ,

N N N

and

n �1i�n p q ( ) �p q (n � 1)i i i i i ini
i i2 2E(w ) = E[(g � b) ] = = ,

N N

and, when the component derivations of E(by) are used,

�n E[b(m � ga)Fi] �n E(bmFi) �n E(bgaFi) �n (p � q )mi i i i i i i
i i i i 2E(by) = = � = � E(b )a ,

N N N N

and
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n �1i�n [p q ( )]a �p q (n � 1)ai i i i i ini
i iE(wy) = E[(g � b)y] = E(gy � by) = = .

N N

Thus,

2n �12 2 i �n (p � q )i i i�n [p � q � p q ( )] [ ]i i i i i ni iiV C � 0b b,w 2N N′XX = = �p q (n � 1)i i i[ ] [ ]iC V 0b,w w N

and

�n (p � q )mi i i i
iC � V ab,y bN

Xy = = ,�p q (n � 1)i i i[ ] [ ]iC aw,y N

so that

�n (p � q )mi i i i
i

b � ab NVb
b̂ = = .[ ][ ]

b aw
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